Teaching Chemistry

Wavefunction, Inc.

18401 Von Karman Ave, Suite 370 Irvine, California 92612

support@wavefun.com

In This Document...

Molecular Modeling — Using Science to Teach Science	3
User Input Functions — Touchscreen, Trackpad, Mouse	6
Visualization — Model Styles and Other Display Options	11
Dynamics — Starting and Controlling Simulations	17
Building — From Molecules to Simulation Cells	21
Comparing — Showing Models Side-by-Side	29

Molecular Modeling **Using Science to Teach Science**

How Is It Unique?

3D Visualization & Simulation

- a) At the Molecular Level...Always
- b) Very Science-Based...Always (Closely Related to "Real" Molecular Modeling Programs)
- c) Explorable...Always

• **Direct Demonstrations** ("The Molecular Perspective")

- Inquiry/Exploration
 (Ask Leading Questions!)
- Computer Lab Experiments
 (Complement Wet Lab)
- Take-Home Labs
- Enrichment
- Self-Study

Instructor Computer (Lecture)

Lab Computers

Student-Owned Computers

User Input Functions

Touchscreen, Trackpad, Mouse

DY55EY How Do I Manipulate the Models?

In-Program Reference: Help Menu

(Tailored for Windows/Macintosh)

55EY Main 3D Functions

```
□ Rotate

□ Rotate

□ Left Button + Drag (Trackpad / Mouse)

□ Long Press + Drag (Touchscreen)

Right Button + Drag (Win Touchpad / Mouse)

⊕ + Button + Drag (Mac Trackpad)

□ Zoom

□ Pinch (Touchscreen / Trackpad)

Scroll Wheel (Mouse)
```

Further options are available, especially for older computers

→ Consult *User Input Functions...* in the **Help** menu

Models with Multiple Molecules

CTRL key not held down → Entire Model
(= All Molecules)

 \square CTRL key held down \rightarrow Selected

Manipulating a Selected Bond

- Double-tap / double-click on bond to select it (Red wrap-around arrow confirms selection)
- ☐ ALT key not held down →

 Rotate Model

Translate Model

 \square ALT key held down \rightarrow

Rotate Around Bond

Change Bond Length

Drag (Touchscreen)

Left Button + Drag

Long Press + Drag (Touchscreen)

Right Button + Drag

+ Button + Drag (Mac Trackpad)

Visualization

Model Styles and Other Display Options

What Style Should I Choose?

- ☐ Start with **Space Filling** it shows what things "really look like"
 - Molecular shape
 - Packing in solids and liquids
 - Emptiness of gases

- To see details, switch to Ball and Spoke (or Ball and Wire)
 - Covalent bonds
 - Distance / Angle measurements!

- ☐ **Tube** very useful in conjunction with hydrogen bonds
- ☐ Wire useful for the solvent of solutions

- → Ball and Spoke is the default style for the build panels
- → Use Space Filling for gases...or you will hardly see anything!

Custom Visualization (I)

Molecular Shape / Polarity

☐ Space Filling style — Approximate Shape

☐ Outer Surface — True Shape (Electron Cloud, ~98% of the total density)

☐ Polarity Map — True Shape + Polarity

YSSEY Custom Visualization (II)

Molecular Shape / Polarity

Dipole Arrow(s) — Combine with **Ball and Wire** (or **Wire**) style

☐ Charge Labels — Atomic Partial Charges

☐ Lone Pairs — Cartoon Representation

Custom Visualization (IV)

Gas Laws / Kinetic Theory

☐ Collisions — select Molecule-Wall

→ Concept of "Pressure"

☐ Trails — Right-click on an atom and select **Set Trail**

SEEY Custom Visualization (III)

Intermolecular Forces

- ☐ Space Filling style
 - → Dispersion forces

 C_5H_{12} (1)

CH₂Cl₂ (I)

☐ Dipole Arrows

(Combine with the **Hide** style)

 \rightarrow Dipole-dipole forces

☐ Hydrogen Bonds

(Combine with the **Tube** style)

→ Hydrogen bonding forces

 $H_2O(I)$

Dynamics

Starting and Controlling Simulations

Molecular Dynamics (I)

Time Scales

 $\sim 10^{-15}$ s (femtoseconds) ← Actual Molecular Time Step (as assigned by the program)

~ 10^{-12} s (picoseconds) \leftarrow Typical "Step-by-Step" Interval ~ 10^{-9} s (nanoseconds) \leftarrow Maximum Length of Simulations

(long simulations of hours duration)

DY55EY Molecular Dynamics (II)

Slowing Down (and Speeding Up)

Slowing Down (and Speeding Up)

Smaller Time Step

Larger Time Step

Number of Computational Steps

Per Minute of Wall-Clock Time (!) Stays the Same

Simulation Effectively
Slows Down

Can always **reduce** the time step size...

Simulation Effectively

Speeds Up

...but should **not** significantly increase step size or may provoke a numerical instability (and possibly program crash) → automatically assigned time step is already "large")

Building From Molecules to Simulation Cells

Simple Building

Molecule Building (I)

- ☐ Initial single click on background
 → Start molecule (first building block)
- | 10 to 10

- ☐ Single click on yellow spoke (free valence)
 - → Continue with the *same* molecule

- ☐ **Double**-click on background
 - → Start new (additional) molecule

☐ Close the build panel with its **Close** ☑ button (Starting a simulation ▶ will also close the build panel)

Molecule Building (II)

Hydrogens can be added manually...

...or are filled in automatically

as soon as the build panel is closed!

- Deleting is modal
 - → Will <u>keep deleting</u> until returning to "Add Atoms"
- ☐ Always **Minimize (or run a simulation)** when done building!

-H

DDY55EY Building of Gases and Liquids (I)

Apply

Must build molecule first Gas or Liquid (Mixture: need one molecule for each of the components) File Edit View Style Tools Build B New Sample HOME New Sample Add Atoms - Minimize HOME Add Atoms Entry-Level Delete Atoms Make Bond Then use Simulation Cell Simulation Cell panel Cancel Building File Edit View Style Tools Build Electi File Edit View Style Tools Build Electr Untitled1 🛛 Gas Liquid Density Pressure Vacuum Set Density and Number of Molecules ▼ Temperature: 25 Pressure: 1 g/cm³ # of Molecules Cell Ratio: Cell Ratio: 1:1:1 Liquid Periodic Boundary Conditions: XYZ ▼ Gas Apply

Building of Gases and Liquids (II)

☐ Don't exceed ~1,000 atoms* total ...or things may get very slow!

^{*}atoms, not molecules

☐ Argon is excellent for Gas Laws / Kinetic Theory (computationally "cheap")

- ☐ Build Gases at ~10 atm (rather than ~1 atm)
 - → More collisions, "better" (faster) equilibrium
- ☐ Build Liquids at slightly reduced density (such as 0.9 g/cm³ instead of 1.0 g/cm³)
 - → More mobility, faster equilibrium

DYSSEY Advanced Building

Unusual Bond Orders, Inorganic Compounds, Complexes

Biopolymer Building

☐ Don't exceed ~30 amino acids / ~30 base pairs ...or things may get very slow!

Comparing **Showing Models Side-by-Side**

DY55EY Comparing Two Models from the Same Lab

Getting the Comparison Model via Search

OdysseyInstructor

Look for:

Iron, Solid

Iron Chloride

Iron Disulfide (Marcasite), Solid

OK

Iron Disulfide (Pyrite) Solid

iron

Available for comparison: ~1,800 models

how

Is

ne fo

the

e fac

thus

oft

ine السبـــ "real size"

Cancel

Second model initially shown on same scale (zoom is required)

Comparing Two User-Built Models (I)

Suitable even for...

- ☐ simulation cells
- ☐ independent **dynamics** of both systems
- ☐ independent **electron** cloud calculations

...keep the build panel open!
(if already closed, you must reopen
 it with Build → Add Atoms)

Modify the second model, finally close the build panel (*Note:* Cannot reopen panel once closed)

Duplication Step

[The hydrogens of the second model will turn into yellow spokes as soon as a building block is selected]

Y55EY Comparing Two User-Built Models (II)

Alternate Method

Build the first molecule...

File of the Year Style Todes field Electron Snapsket Helps

The Strate Address Plantise Validity Franks Name Belotons Congres - Properties Parks

The Strate Address Plantise Validity Franks Name Belotons Congres - Properties Parks

Today Lead

Congress - Properties Parks

Today Lead

...and simply add another molecule to the **same** model (double-tap/double-click on background to start the second molecule)

Close the build panel

- Comparison of two simulation cells not possible
- Dynamics applies to the interacting dimer (!) of molecules, not the two molecules independently
- ☐ Electron cloud calculated for the **dimer** (!) of molecules, not the two molecules independently

Running Two Simulations at Once

Calculating the dynamics of two systems at once invariably probes the limits of computational power → expect slow simulations

One dynamics toggle controls both simulations (simulations progress at the same speed)

